The Geology of Oxford Gravestones

By Duncan Murdock, Earth Collections manager

A cemetery may seem like an unusual location for a geology fieldtrip, but for rock hounds from beginner to professor there’s a treasure trove of different rock types in gravestones. Whether it’s shells of oysters from the time of the dinosaurs, or beautiful feldspar crystals formed deep within the Earth’s crust, rocks are uniquely placed to tell the story of the history of our planet.

This incredible resource is elegantly celebrated in a new temporary exhibition in the Weston Library in Oxford. Compiled by two of the Museum’s Honorary Associates, Nina Morgan and Philip Powell, The Geology of Oxford Gravestones brings together the geological and human history of Oxford’s cemeteries.

The exhibition is illustrated with artefacts including undertakers’ trade cards and ‘rules of burial’, rock samples from the Museum’s collections, and photographs of headstones from Museum luminaries such as Henry John Stephen Smith, our second Keeper, and Henry Acland, one of our founders.

The Geology of Oxford Gravestones exhibition poster

Although compact, the exhibition is full of fascinating snippets for fans of geology and social history alike, even bringing the science right up to date with a study using lichen on gravestones to understand our changing environment. The text and objects on display are enhanced by rolling digital displays that give more insight and colour to the story.

As the exhibition says, “visit a cemetery with a hand lens and you’ll be amazed at what you can see, you’ll never look at cemeteries in the same way again”. Just make sure you visit the display in the Weston Library first!

The Geology of Oxford Gravestones, is in the Blackwell Hall foyer of the Weston Library in Broad Street, Oxford and runs from 17 July to 12 September 2021. You can also find out more about Gravestone Geology here and in our previous post Celebrate science in a cemetery.
A golden sphere sitting on a stone balcony between stone columns and carvings

Solving a celestial mystery: the Sun, Earth and Moon model

By Danielle Czerkaszyn, Librarian and Archivist

We like to think we know a lot about our collections, but with millions of items to care for some inevitably remain mysterious, with little record of their history. Luckily, every now and then someone gets in touch with a story about an object or specimen we know very little about. We were delighted when this happened recently for one of the most overlooked items on display: a delicate scale model of the Sun, Earth and Moon.

The model is a long-standing feature of the upper gallery: an astronomical moment hidden amongst the zoological and the geological. Yet we knew very little about it. Who made it, when was it installed, and what was its intention?

Meet the maker: Ted Bowen (1898-1980)

The Earth and Moon at a scale of 1:4,000,000,000 are tiny spherical models.
Edmund ‘Ted’ John Bowen. Image courtesy of Dr Will Bowen.

Thanks to a chance remark by Dr Will Bowen we can reveal that the model was created by his grandfather, Edmund ‘Ted’ John Bowen, lifelong fellow in Chemistry at University College. Ted Bowen was passionate about communicating science effectively, and the model was intended as a simple yet powerful representation of the true scale of our Solar System.

Born in Worcester in 1898, Ted Bowen won the Brackenbury Scholarship in 1915 to the University of Oxford, where he studied chemistry in the Balliol/Trinity labs. It was here that, from necessity, he started to create his own scientific apparatus and models, all made from whatever was to hand.

In 1935, Bowen was elected a Fellow of the Royal Society for his research into fluorescence and in 1963 was awarded the society’s Davy Medal in recognition of his distinguished work explaining photochemical reactions. While Bowen devoted his working life to the field of chemistry, he had many other scientific interests, especially palaeontology, but also our planetary system.

Creation of the Sun, Earth, Moon model

The Earth model is no larger than a pea, but still beautifully detailed.

Although we don’t know for sure, it is likely that the model was made between 1965 and 1971, and donated while Bowen was a member (and later chairman) of the Committee for the Scientific Collections in the University Museum, as the Museum was then known.

The distance across the Museum’s main court, around 37 metres, represents the distance between the Earth and the Sun – one Astronomical Unit, or 150 million kilometres. This makes the model scale to roughly 1:4,000,000,000!

The Sun itself is the size of a small beach ball, while the Earth and the Moon become tiny objects: the Earth the size of a small pea, and the Moon little more than a dot. Yet Bowen’s attention to detail is striking: the Earth is decorated with continents and even the miniscule Moon has texture to its surface.

If you haven’t seen it before, be sure to look out for the model on the upper gallery of the Museum: the Earth and Moon are on one side, where the Museum Café is currently located, and the Sun glistens on the far side, nestled in our temporary exhibition gallery.

Many thanks to Dr Will Bowen for his reminiscences, which have illuminated an object that was hidden in plain sight.

Black and white photograph of borders, paths, and trees with spired tower in background

Celebrating 400 years of botany at Oxford University

By Danielle Czerkaszyn, Librarian and Archivist

John Phillips, Professor of Geology (1856-1874)

As a natural history museum, we are perhaps slightly unusual: aside from some fossilised plants, there are no botanic specimens in our collections. The reason for this is that when the Museum opened its doors in June 1860, Oxford Botanic Garden had already been around for a considerable 239 years, and it was considered unnecessary to move it.

Today, the Botanic Garden celebrates 400 years since its founding as the Oxford Physic Garden on 25 July 1621. To mark this anniversary we’ve explored our archive to highlight some connections between the Museum and Botanic Garden, in a relationship that continues to this day.

With its Pre-Raphaelite influence, the design of the Museum was conceived as an object lesson in art; both beautiful and instructive, it should teach students and visitors alike about the natural world. One of the most noticeable decorative teaching tools are the columns, capitals and corbels that surround the main court of the museum. Following Pre-Raphaelite principles, these were designed by Professor of Geology and the first Keeper of the Museum, John Phillips, who sketched most of the designs and outlined the order they would go in.

The plans called for 126 columns, 64 piers and 192 capitals and corbels. Each column was made from a different decorative stone from around Britain and Ireland, topped with a carved capital and flanked by a pair of corbels carved into plants representing the different botanical orders. As it was decided early in the design process for the Museum that the Oxford Botanic Garden would not move from the High Street, these carved plants were meant to ‘satisfy the botanist.’ Each column was supposed to be labelled with the name of the stone, its source, and the botanical name of the plant, but unfortunately only the geological inscriptions were completed.

James O’Shea carving the Cat window found on the front façade of the Museum, c. 1860

The carvings were created by ‘Nature’s own Pre-Raphaelites’ the O’Shea brothers, James and John, and their nephew, Edward Whelan. Working in collaboration with Charles Daubeny, Professor of Botany and head of the Oxford Botanic Garden, Phillips supplied the O’Sheas with specimens of the plants he had chosen, and so the carvings were made from life. Each capital is different and unique based on the plants they were representing. Some are simple and elegant while others are more intricate and hide small birds, animals and insects.

Phillips also worked with another curator at the Botanic Garden, William H. Baxter, who advised on suitable trees and shrubs to adorn the grounds surrounding the Museum. Over the years, as landscaping has changed and additional science buildings have been added around the Museum, only one of the trees chosen by Phillips and Baxter has survived. It is the imposing Giant Sequoia on the front lawn, which was planted in the early 1860s and is believed to be one of the oldest specimens in the United Kingdom.

Our connection to Oxford Botanic Garden continues to the present day. As the Museum embarks on the first major redisplay of its permanent exhibits in almost 20 years, staff are collaborating with the Garden to reference plants for displays showing the immense, interconnected variety of the natural world.

We are very pleased to be strengthening the Museum’s long relationship with the Botanic Garden, and would like to take this opportunity to wish everyone there a very happy 400th birthday!

Oxford Botanic Garden today
Top image: Oxford Botanic Garden in 1880

swifts flying around the museum tower against a cloudy sky

Swift Inspiration from the Sky

By Chris Jarvis, Education Officer

Swifts circling the Museum tower

Many of us at the Museum are inspired creatively, as well as scientifically, by the wonders of the natural world. So it is always uplifting to see that the Museum building and its collections evoke similar feelings in our visitors. However, apart from the odd, sneaked peek over the shoulder of someone busily sketching a specimen or spandrel, it is rare that we get to enjoy the results of their inspiration, which is why it was so nice to receive the poem below from Tony Owen.

Tony emailed us to say that, whilst teaching on the Summer International Programmes at Hertford College in 2018 and 2019, he often visited the Museum and became aware of the colony of swifts that annually nests in the Museum tower. Tony read about their fascinating lives, watched their progress through the breeding season on our live nest box cams and Swifts Diary, and enjoyed seeing them screaming around the tower itself.

This led to the inspiration for Tony’s poem – The Swifts. In putting pen to paper, Tony joins many other poets who have found inspiration from these amazing birds, including Ted Hughes, Anne Stevenson and Wilfred Owen.

It was very kind of Tony to share his poetry with us so we thought we would share it with you in the hope that it may inspire your own creativity from nature.

**

The  Swifts

By Anthony David Owen

From the African horn

ahead of the storm,

screaming parties

careering across the sky.

Slicing through the steam

of the Savannah and plain,

upon Saracen scimitar wings

that chase the rain.

Elusive and as quick

as the spring,

gliding high upon

the saharan westerly winds.

In meadows the grasses

and wildflowers are dry,

they sun their wings

and chase spiders and flies.

In airstream waterfalls

of cloud, air and sunlight,

they whirl and twirl

then skim and scythe.

To etch and Scribe

with black dagger wings,

upon the slate and tile

of Gothic and Victorian

spires and skies.

Marble-effect frame inlaid with a marble-effect stone showing the outline of numerous cross-section gastropod shells

The Continuing Importance of Corsi’s Legacy

Four Crowns is a studio based in Oxford which is dedicated to keeping the craft of scagliola alive. But what exactly is scagliola, and how does it relate to the Museum’s collections? Freddie Seddon, a University of Oxford Micro-Internship Programme participant at Four Crowns, tells more about this fascinating process…

Sculpture of the front half of a foot in brown/yellow marble effect, showing cracks and damage to some of the toes
Foot, Four Crowns, 2020
145mm

Scagliola is the technique of imitating the beautiful patterning and colours of marble. With roots in the ancient world, scagliola saw a revival from the 17th century, when European artists and architects returned from their Grand Tours of the continent wishing to replicate the marbles of Classical and Renaissance Europe.

Several techniques can be used to reproduce the appearance of marble in plaster, with the addition of other natural pigments and larger chips of coloured plaster. The artist must try to replicate the conditions under which particular marbles form: compressions, twists and layers applied to the plaster to give the image of breccia, veins, and even fossils.

The Museum has a large collection of decorative stones, including the Faustino Corsi collection, acquired in 1827. The Corsi collection holds 1,000 samples of ancient and modern decorative stones, including polished marbles, granites, serpentines, and jaspers. Faustino Corsi (1771–1846) built the collection in the early 19th century, first by gathering material used in ancient times across the Roman Empire, and later adding decorative stone from contemporary quarries, mainly in Italy, but also Russia, Afghanistan, Madagascar and Canada.

Marble-effect frame inlaid with a marble-effect stone showing the outline of numerous cross-section gastropod shells
Lumachellone, Four Crowns, 2018 990x485x60mm

The Corsi collection is valuable tool when it comes to scagliola. Images and marble descriptions from the Corsi database help determine the processes a certain scagliola sample should undergo and the natural colours that these would produce. To accurately depict marble, an artist might need to create upwards of twenty colours and clarity levels – even then, only high-quality, natural pigments will produce natural results. The piece is polished to obtain a shine like that possible on natural marbles, and cross-checked against Corsi’s samples one final time to guarantee a faithful replication of the stone.

Statue of a robed figure standing on a plinth and holding a golden lizard-like reptile in one hand
Codazzi, Four Crowns, 2017
270x200x760mm

In this way, the selection of which stone to imitate is a creative challenge in itself for the artist. Each item in the Corsi collection offers different aesthetic and cultural experiences. Lumachellone antico, for example, is limestone with large fossilized gastropods, admired in classical Rome for its richness and complexity. The collection contains only one example of this stone, composed of samples from two different locations, which the Four Crowns artist has been able to faithfully replicate. As this marble type has never been available on any commercial scale or markets, it is up to the emerging generation of scagliola craftsmen to painstakingly reproduce this ancient stone.

The most ambitious and impactful presentations of scagliola can even mirror a combination of marbles. The Four Crowns’ Codazzi emulates four different stone types: the head is bigio antico, the drapery is giallo antico, and the legs and feet replicate a limestone common in Sumerian sculpture, with a shoulder inlay of bianco e nero.

Through the art of scagliola, and the unique reference resource of the Corsi Collection, rare, beautiful or lost marbles are able to be recreated time and again.

Freddie Seddon is a second year student, reading Ancient and Modern History (BA) at Wadham College, Oxford.

Ink drawing showing the skeleton of dinosaur

Tales of Iguanodon Tails

By Leonie Biggenden, Volunteer

As one of our many invaluable volunteers, Leonie Biggenden has regularly helped to run our Science Saturdays and Family Friendly Sunday activities, both of which take place under the watchful eyes of the large T. rex and Iguanodon skeletons in the Museum’s main court. Having spent so much time beside the Iguanodon, and with a lack of in-person volunteering opportunities in recent months, Leonie decided to find out some of the history of this striking cast. For Volunteers Week this week, she shares what she discovered…

Next year will be the 200th anniversary of the discovery, by a roadside in Sussex, of the first Iguanodon teeth. Found by Mary Mantell in 1822, her husband Gideon saw their similarity with the teeth of modern iguanas and suggested they were from a huge, ancient, herbivorous lizard. He called the animal Iguanodon, and you can see his sketch reconstruction at the top of this post.

However, as an amateur palaeontologist, Gideon Mantell was not initially taken seriously by the scientific establishment. Some claimed the teeth were actually from a rhinoceros, or even a pufferfish! But in 1834, more complete remains were found by workmen who had accidentally blown up a slab of rock in a quarry near Maidstone, Kent. Iguanodon became a rock star of the dinosaur world, being only the second dinosaur – and the first herbivorous one – to be named (the first was the carnivorous Megalosaurus – another famous Museum specimen).

The Iguanodon bernissartensis cast in the centre court of the Museum.

Twenty years later, a model of an Iguanodon was constructed by sculptor Benjamin Waterhouse Hawkins as one of a set of 30 life-sized models of extinct animals for the relocated Crystal Palace Gardens in South London. It was mounted in a rhinoceros-like pose, with what we now know as a thumb spike placed as a nose horn. Scientists always look to the information they have available to them, including observation of living animals, and there is an iguana called Cyclura cornuta – the Rhinoceros Iguana – which does indeed have nose horns, so at the time the nose horn made sense.

Close up photo of iguana head
Rhinoceros Iguana, showing a nose horn. Image: H. Zell, CC BY-SA 3.0 , via Wikimedia Commons

Another 20 years on and a most significant find was made in southern Belgium. In February 1878, more than 30 fully articulated, adult Iguanodon fossil skeletons were found by miners Jules Créteur and Alphonse Blanchard, 322 m deep in the Sainte Barbe coal mine. Louis de Pauw from the Belgian Royal Museum of Natural History started to excavate the skeletons. It was a risky undertaking. In August an earthquake cut them off for two hours, and in October they were forced to return to the surface as the mine flooded.

The fossils were wrapped in damp paper, covered in protective plaster, and divided into 600 blocks. Each specimen was given a number and each block a letter, to record their exact positions in the mine. The 130 tonnes of specimens, rock, iron reinforcing rods, and plaster were then brought to the surface of the mine by horse drawn trucks and transported to Brussels.

For the first time, scientists, and later the public, could see complete dinosaur skeletons. This was important because scientists learned that the unusual spike found in the scattered fossils in the UK was a thumb spike rather than a nose horn, and they ditched rhino resemblance too, though not in time for the Crystal Palace reconstruction!

In 1882, de Pauw began assembling at least 38 Iguanodon skeletons under instruction from Louis Dollo, another famous Belgian palaeontologist. The aim was to put them in their most probable living position. A room with a high ceiling was needed because of their size, and a chapel was chosen. Scaffolding was built with hanging ropes being adjusted so the fossilized bones could be moved into their most likely position and then fixed and reinforced with iron rods.

Iguanodon bernissartensis, like the one on display here in the Museum, was a new species, named in 1881. It lived about 125 million years ago. The first assembly was revealed in 1882 and went on public display in Brussels in 1883. Points of reference used for the pose were the skeleton of a cassowary and a kangaroo.

On the Museum’s cast skeleton you can see rod-like structures going across the blade-like, bony processes on the back. These are ossified, or hardened, tendons and would help to stiffen the tail and therefore restrict its movement. They have been broken where the bend in the tail was made to resemble a kangaroo-like stance. The displacement shows that the true position of the tail should be straight.

But having such a straight tail would mean that the Iguanodon would need its head and arms nearer the ground for better balance. The strong hind limbs suggest it would usually walk on two legs with its tail held aloft, as does the fact that fossil Iguanodon footprints are three-toed, and the three-toed limbs are the back ones.

By the end of 1883, six Iguanodons had been mounted this way and positioned in their own glass cage in the courtyard of the Brussels museum. So Iguanodon was one of the very first dinosaurs to be recovered in its entirety and mounted in three dimensions as though a living animal!

Leonie is a longstanding Public Engagement volunteer at the Museum. Unable to volunteer in the normal way during the lockdown, she researched the history of this favourite specimen and shared what she learned in a talk for other volunteers as part of an online ‘social’. This article has been adapted from that presentation.