Why future homes could be made of living fungus

This article is taken from European research magazine Horizon as part of our partnership to share natural environment science stories with readers of More than a Dodo.

In the summer of 2014 a strange building began to take shape just outside MoMA PS1, a contemporary art centre in New York City. It looked like someone had started building an igloo and then got carried away, so that the ice-white bricks rose into huge towers. It was a captivating sight, but the truly impressive thing about this building was not so much its looks but the fact that it had been grown.

The installation, called Hy-Fi, was designed and created by The Living, an architectural design studio in New York. Each of the 10,000 bricks had been made by packing agricultural waste and mycelium, the fungus that makes mushrooms, into a mould and letting them grow into a solid mass. 

This mushroom monument gave architectural researcher Phil Ayres an idea. ‘It was impressive,’ said Ayres, who is based at the Centre for Information Technology and Architecture in Copenhagen, Denmark. But this project and others like it were using fungus as a component in buildings such as bricks without necessarily thinking about what new types of building we could make from fungi.  

That’s why he and three colleagues have begun the FUNGAR project – to explore what kinds of new buildings we might construct out of mushrooms. 

Mushrooms might sound like an outlandish building material. But there is certainly good reason to drastically rethink construction. Buildings and construction are responsible for 39% of anthropogenic carbon dioxide emissions – and a whopping 21% of those emissions come just from the making of steel and concrete. Construction also uses vast amounts of natural resources. Take sand, one of the principal ingredients in concrete. It takes a special sort, with just the right roughness, to make concrete. These days it is a lucrative commodity and controlled in some parts of the world by sand mafias and stolen by the boatload from islands.  

Such troubles are set to worsen over the next decades as the world’s population grows faster and gets wealthier. We need a lot more homes and if you do the maths, the amount we need to build is staggering. ‘It’s like building a Manhattan every month for the next 40 years,’ said Ayres, borrowing a line from Bill Gates

Fungi bricks 

Can fungi really help? Absolutely, says mycologist Professor Han Wosten at Utrecht University in the Netherlands. Fungi are not consumers of CO2 like plants are. They need to digest food and so produce carbon dioxide, like animals do. However, the organic waste streams (such as straw or other low value agricultural waste) that the fungi digest would be degraded to CO2 anyway, either by composting or burning. Plus, fungi bricks permanently fix some of that waste inside them and so act as a store of carbon. All this makes fungi buildings a climate win – and certainly miles better than using concrete, steel and bricks. 

The mycelium composite can be grown over a woven scaffold for a period of 7-10 days, eventually encasing the structure. Image credit – FUNGAR/CITA, 2019-2020

The FUNGAR project began in late 2019 and so far Prof. Wosten has been experimenting with how to make building materials. At Prof. Wosten’s lab in Utrecht, the team have been combining mycelium, the ‘roots’ of fungi, with agricultural waste such as straw. Then they allow the fungi to grow for about two weeks, until the fungus has colonised the straw. This binds the straw together, producing a white-ish foam-like material. Then they heat-treat it to kill the organism. They can also process it, for example by applying coatings or by squashing it. ‘If we press it we can get a material like hardboard,’ said Prof. Wosten. By varying the type of fungi and agricultural waste, the growth conditions and the post-processing, Prof. Wosten says they are getting all sorts of candidate building materials with different mechanical properties. 

‘It’s very early days to start saying your house will be made entirely of fungus,’ said Ayres. But parts of it already can be. Mogu, a company based near Milan in Italy, already produces and sells sound-dampening velvet-textured wall tiles and floor tiles based on mycelium foam. The company’s chief technology officer Antoni Gandia is another FUNGAR project partner. He said that Mogu is also developing mycelium-based insulation material for buildings. 

Ayres is hoping that the FUNGAR project will go way beyond just using fungi-based products as components in existing building designs. He wants to think about what entirely new kinds of building might be made from fungi. Foremost in his mind is building with living fungus. 

‘It’s very early days to start saying your house will be made entirely of fungus.’

Phil Ayres, Centre for Information Technology and Architecture, Copenhagen, Denmark

Living fungus 

There are two principal advantages to this. First, living fungus might behave as a self-healing material, simply re-growing if it becomes damaged. Second, mycelium networks are capable of information processing. Electrical signals run through them and change over time in a manner almost akin to a brain. ‘We’ve discovered that fungal materials respond to tactile stimulation and illumination by changing their patterns of electrical activity,’ said Prof. Andrew Adamatzky at the University of the West of England in Bristol, UK, who is coordinating the project with Ayres. 

The idea is that perhaps the very structure of a mushroom building might sense and respond to its environment independently. It might for instance sense when CO2 levels from the mycelium are building up and open the windows to release the gas, according to Gandia. 

Building with living mycelium will be a big challenge. This is because the longer it grows, the more of the substrate material – the straw, or whatever waste – it decomposes. Since the straw gives the materials their structural integrity, allowing the fungi to grow for too long isn’t desirable. There may be ways around this though. Depriving the fungi of water puts it into a dormant state: alive but not growing. And so one of Ayres’ ideas is to construct walls with two layers of dead fungus enclosing a layer of living fungus inside. This set up would shut out water from the inner layer, keeping the fungus there dormant. 

A creamy-coloured, slightly bumpy and curved panel created from a mould
Mycolite panels are made by pouring the composite into a mould. Image credit – FUNGAR/CITA, 2019-2020

One of the few other people who have explored working with fungi in construction is Jonathan Dessi Olive at Kansas State University in the US. He says that working with living mycelium is a very interesting new idea because it offers the possibility of the building being able to heal itself. But for him the real attraction of what he calls ‘myco-materials’ is that they ‘give us a way of reshaping how we think about the permanence of architecture.

‘What if some – not all – of our buildings were meant to only last a couple of years and could thereafter be recycled into shelter, food, or energy?’ he said. 

The next major goal for the FUNGAR project is to build a small, freestanding building. They plan to pull that off within a year and then spend time monitoring it as it ages. It is crucial, says Ayres, to be able to monitor the living structure and see how it changes. It isn’t yet clear exactly what sorts of structures might end up being made from fungi, but they will probably start small. ‘I wouldn’t be crossing a bridge made of fungi, would you?’ joked Prof. Wosten. 

You might be wondering what happened to Hy-Fi, that igloo-like structure in New York. The answer points to one of the most beautiful things about mycelium buildings. No wrecking ball or slow decay for them. It was taken down and composted. 

The research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.

This post Why future homes could be made of living fungus was originally published on Horizon: the EU Research & Innovation magazine | European Commission.

Stop, look, listen

By Sarah Lloyd, Head of Education, and William Sharpley, Youth Forum member

Connecting with the natural world around us is important for many reasons. It’s proven to help our mental health, it’s enjoyable and fascinating, and it gives us an insight into the rhythms and changes of the life that surrounds us. And during the pandemic lockdown this has taken on more significance than ever.

Over the past few months we have been keeping in touch with the Museum’s youth groups as part of our HOPE for the Future project, which is supported by the National Lottery Heritage Fund. The project is themed around the Museum’s British insect collection and our discussions with the youth groups have triggered a particular interest in the diversity of insects in our outdoor spaces.

Common Cardinal Beetle (Pyrochroa serraticornis). These beetles are often found basking in the sun on leaves and flowers in woodland margins. Image: William Sharpley.

A great way to become more observant about the world around you is through photography. During a recent lockdown walk, Youth Forum member William Sharpley took out his camera and captured the beautiful images of insects you can see in this post. Looking at insects more closely made William curious about what he could find in his garden, where he noticed a colony of bees active around a compost bin.

The compost bin is in an old coal bunker. It gets very hot in the sunny weather. I have watched the bees going in and going out of here.

The compost bin in an old coal bunker provides a good habitat for a colony of Tree Bumblebees (Bombus hypnorum). Image: William Sharpley.

Noticing what animals are present, and learning to identify them, helps to build a picture of how the natural world may be changing.

Bees are a good case study. The image below is of a Tree Bumblebee (Bombus hypnorum). Tree Bumblebees were first recorded in the UK in 2001, and since 2007 they have thrived in our increasing urban environments, with numbers and range rising dramatically. They are now a common sight in gardens, establishing colonies in enclosed spaces above ground. William’s old coal bunker compost heap is the perfect spot.

Tree Bumblebees (Bombus hypnorum) like this one have increase in numbers and range dramatically in the UK over the past couple of decades. Image: William Sharpley.

By noticing new species around us we are reminded that populations of living things change over time. Some species, like the Tree Bumblebee, have become more common, while others, such as the Great Yellow Bumblebee (Bombus distinguendus), are now much rarer than they once were.

Great yellow bumble bee (Bombus distinguendus). Image by Nick Owens.

Once we know what is around us we can turn our attention to patterns of behaviour. William went on to use his science skills to plan an investigation.

I will be trying to find out if bees are more active during the morning or in the afternoon. I will count the bees going in and out of the nest at different times during the day.

The Youth Forum conducted a similar study earlier in the spring, observing when female Hairy-footed Flower Bees and Honeybees were active and feeding on garden plants. They found that the Hairy-footed Flower Bees foraged mostly in the morning, and the Honeybees in the afternoon.

Feeding behaviour in bees is an interesting thing to study because it may be affected by some pesticides called neonicotinoids. Honeybees exposed to low levels of these pesticides spend less time feeding, and over a long period their reduced food intake causes a hive of bees to decline and become more susceptible to other pressures, such as disease, habitat destruction, or extreme weather.

Rather than relying on a handful of chemicals like neonicotinoids, farmers are now encouraged to use a range of methods to control pests. These include using natural predators – known as biological control – and organic methods.

From these relatively simple observations of the natural world we can gain important information about changing environments. And by sharing what we notice, and encouraging others to do the same, we are better able to understand environmental changes and we’ll feel more connected to nature as a bonus. So head out and start looking!

The Museum’s Youth Forum was established to connect with and learn from local young people. The group meet every month to take part in a programme of activities designed for and by the group.

Top image: Common mayfly (Ephemera Danica) by William Sharpley.

Image credit - Flickr/milo bostock, licensed under CC BY 2.0

Changing climate is narrowing options for migrating birds

This article is taken from European research magazine Horizon as part of our partnership to share natural environment science stories with readers of More than a Dodo.

Across an entire desert or ocean, migratory birds make some of the most extreme journeys found in nature, but there are still huge gaps in our understanding of how they manage to travel these vast distances and what a changing climate means for their migration patterns.

‘Some species of migrants might be affected by a changing climate,’ said Professor Stuart Bearhop, an animal ecology expert from the University of Exeter. ‘There is evidence from a number of populations that climate change probably is going to have some impact on the demography (population levels).’

Bearhop ran the STATEMIG project, which studied the migration of Brent Geese along their journey from Ireland to the Arctic where they breed. He found that the volatility of today’s seasons was affecting the geese’s population levels because the weather was playing havoc with their breeding patterns.

‘Wet years are predicted to increase with climate change as temperature rises, but, of course, because they travel so far north, it doesn’t mean rain, it means snow,’ he said. Brent Geese are more likely to breed when the weather is cold and clear, but when there is more snow there are fewer places to safely raise their young and feed.

The team observed that in the colder years the birds were breeding later in the year, causing ripple effects for their populations. The geese did not have enough time to raise their offspring to independence before winter, or there was not enough food for them to survive.

Bearhop says the snowy years saw more offspring die or be abandoned by adults. That means if snowy years persist then it could pose a long-term risk to the population of these birds.

Brent Geese

Bearhop chose Brent Geese because they follow a routine migration and their young stay with their parents for at least a year. These reliable patterns reveal useful insights into population levels and what could be affecting their migration.

To gather their data, STATEMIG researchers observed the geese in Ireland and Iceland before the birds flew to the Arctic to breed around July. In Ireland and Iceland they attached identity tags to the birds and took some physical measurements to use as reference points over several years.

When the geese returned to Ireland and Iceland around late August, with their chicks, the researchers could compare the population levels and get an idea of how environmental factors had shaped their journeys.

‘There are multiple factors that have likely driven the evolution of migration, these likely differ among species and the debate is about which ones are most important,’ said Bearhop.

Debate

Bearhop says the two key reasons birds migrate is because of a competition of territory and to take advantage of seasonal ‘pulses’ of vegetation growth or gluts of insects to ensure they have enough food to raise their young.

STATEMIG’s research emphasises the importance of the latter and Bearhop hopes it could lead to further research that explores how changes to feeding grounds will affect populations of migratory birds.

According to Dr Sissel Sjöberg, a bird migration researcher from the University of Copenhagen, Denmark, scientists understand some parts of why birds migrate, like knowing where they eat and breed, but they do not have the tools to accurately understand them during the entire migration.

For instance, there are high resolution tags that can be put on some big birds to track their location, but these do not fit on smaller birds which make up most of the ones migrating.

 Tiny backpacks worn by noctural small birds contain a pressure sensor which provides an update every five minutes of the birds’ behaviour during migration. Image credit - Dr Sissel Sjöberg
Tiny backpacks worn by noctural small birds contain a pressure sensor which provides an update every five minutes of the birds’ behaviour during migration. Image credit – Dr Sissel Sjöberg

These tags also do not provide insights into other aspects, like altitude or how they traverse over huge, inhospitable areas where they may not be able to land, like the Sahara desert or the Pacific Ocean.

Dr Sjöberg is the principal researcher of the BIRDBARRIER project which is putting tiny backpacks on nocturnal small birds migrating long distances, such as red-backed shrikes and great reed warblers. These backpacks contain an activity log with a pressure sensor to determine heights and provide updates every five minutes of their behaviour during the journey, which can be correlated with weather forecasts or detailed landscape maps.

‘It is clear they go higher in their flights then we thought before,’ said Dr Sjöberg, adding that experts previously thought their size limited them to flying at 2,000-3,000 metres above sea-level, but she has observed them fly at almost 6,000 metres.

Dr Sjöberg says they could be doing this to find stronger winds that carry them longer distances, which require less energy to fly in and increase their chances of survival.

She says the biggest risk for these birds is to stop in the hostile terrains they cross because it could be difficult to take off again or find the same heights. Safe places to land are crucial to these birds on their intercontinental journeys because they have favourable conditions, including sources of food, but in some places they are getting smaller, for instance, in the Sahara where the desert is expanding.

‘Those (safe) areas are getting smaller and smaller so there is more competition,’ said Dr Sjöberg, who will continue to collect data from the backpacks for several more months before analysing it for some new insights.

She hopes that her research will help identify the most important areas for birds, which could help inform authorities on how to better protect these safe havens.

The research in this article was funded by the EU. If you liked this article, please consider sharing it on social media.

This post Changing climate is narrowing options for migrating birds was originally published on Horizon: the EU Research & Innovation magazine | European Commission.