Re-Collections: Jane Willis Kirkaldy

By Evie Granat, Project Officer Trainee with the Freshwater Habitats Trust and Museum volunteer


The Museum is lucky enough to house several specimens presented by Jane Willis Kirkaldy (1867/9 – 1932). They serve as a reminder of a passionate and dedicated tutor, and of a key figure behind the development of women’s education at Oxford University.


Jane Willis Kirkaldy was born somewhere between 1867 and 1869, and spent her youth in London with her parents and five siblings. After completing her secondary education at Wimbledon High School, Kirkaldy gained entry to Somerville College (Oxford) on an exhibition scholarship in 1887. She finished her degree in 1891, becoming one of the first women to achieve a First Class Hons in Natural Sciences (Zoology). However, since the University didn’t award women degrees in the nineteenth century, it wasn’t until 1920 that Kirkaldy received her MA.

Upon completing her undergraduate studies, Kirkaldy worked for a short period as a private tutor in Castle Howard before returning to Oxford in 1894. Whilst researching at the University, she produced two papers for the Quarterly Journal of Microscopical Science, including an article entitled “On the Head Kidney of Myxine”. This study of the renal systems of hagfish was written with the aid of experimental work carried out by renowned zoologist Walter Weldon at his UCL laboratory. She also studied lancelets under the Oxford Linacre Professor of Zoology, publishing “A Revision of the Genera and Species of Branchiostomdae” in 1895.

Kirkaldy’s achievements are especially noteworthy given how few women studied Natural Sciences at Oxford during the nineteenth century. In addition to her contributions to the scientific field, she also helped advance women’s education at Oxford University. In 1894, The Association of the Education of Women named Kirkaldy a tutor to female students in the School of Natural Sciences. The following year she ceased all research to concentrate fully on teaching, co-authoring ‘Text Book of Zoology’ with Miss E.C. Pollard in 1896, and Introduction to the Study of Biology with I. M. Drummond in 1907. She eventually became a tutor or lecturer at all of Oxford’s Women’s Societies, and a Director of Studies at all five of the women’s colleges. Amongst the many female scientists that came under her care was the Nobel Prize-winning chemist Dorothy Crowfoot Hodgkin.

Left: Page from one of our donations books listing Jane Willis Kirkaldy as the donor of a series of Middle Devonian fossils (from the Eifel) to the Museum in October 1901. Right: Chromite from East Africa, also donated to the Museum by Kirkaldy.

Beyond the Department of Natural Sciences, Kirkaldy was an important figure at Oxford — she served as a member of the Council of St. Hugh’s College for 14 years, and was made an honorary fellow of Somerville College in 1929. At the Museum of Natural History, she presented beetles from New Guinea (1890), Devonian Fossils from the Eiffel (1901), and Chromite from near Beira, Mozambique (1924).

Kirkaldy retired from the University in 1930 due to ill health, before passing away in a London care home in 1932. Oxford University subsequently dedicated the junior and senior ‘Jane Willis Kirkakdy Prizes’ in her memory, which still exist to this day.


References

https://www.firstwomenatoxford.ox.ac.uk/article/principals-and-tutors

https://archive.org/details/internationalwom00hain/page/160/mode/2up

https://www.ias.ac.in/article/fulltext/reso/022/06/0517-0524

http://wimbledonhighschool.daisy.websds.net/Filename.ashx?tableName=ta_publications&columnName=filename&recordId=72

http://wimbledonhighschool.daisy.websds.net/Filename.ashx?tableName=ta_publications&columnName=filename&recordId=71

https://archive.org/details/internationalwom00hain/page/160/mode/2up

Dorothy Crowfoot Hodgkin: Patterns, Proteins and Peace: A Life in Science, by Georgina Ferry

Quarterly Journal of Microscopical Science

Iconotypes: A Compendium of Butterflies and Moths

By Danielle Czerkaszyn and Kate Diston

Today, the Museum is celebrating the publication of Iconotypes: A Compendium of Butterflies and Moths based on William Jones’ unpublished, six volume manuscript. Danielle Czerkaszyn, Librarian and Archivist, tells us more about the importance of Jones’ work…

Since the 1920s the Museum has had in its care an original, unpublished manuscript containing 1,292 beautifully detailed and colourful paintings of butterflies and moths. Known as Jones’ Icones, this one-of-a-kind work was created in the late 18th century by retired London wine merchant, natural historian and Lepidopterist, William Jones (1745-1818).

In six volumes Icones depicts over 760 butterflies and moths from the collections of some of the most eminent naturalists in London at that time, including entomologist Dru Drury, explorer Sir Joseph Banks, the founder of the Linnean Society, Sir James E. Smith, and Jones’s own collection. A labour of love, Jones spent 30 years of his life – from 1780-1810 – using the finest materials to ensure Icones was both accurate and beautiful.  

In addition to being a stunning work of art, Jones’ Icones is an extraordinarily important document in the history of entomology and insect collecting in Britain. At the time Jones was making these paintings, the British Empire was rapidly expanding. This was an exciting time to be an entomologist, and species from as far away as Africa, India and Australia were being described for the first time. Over such a long period of time, some of the butterfly specimens illustrated by Jones have been destroyed, lost or divided among private collectors, so Jones’s work represents a singular historical document of these early collections. 

Jones’ Icones was even consulted by a student of Linnaeus, Johann Christian Fabricius – the man credited as the first to describe over 10,000 insects. Fabricius named 231 new species from the images in the Icones, citing Jones’ work in his publication Entomologica Systematica in 1791. The images from which new species are described are known as iconotypes. As the six volumes hold 231 iconotypes, Icones constitutes part of the foundations of butterfly taxonomy and systematics making it one of the most scientifically important items in the Museum’s archive. 

Icones also provides early documentation of global butterfly fauna in a pre-industrial world which carries important messages for today’s conservation biologists. Studies show that global insect abundance has declined by as much as 45% in half a century and several of species illustrated in the manuscript are now in decline or locally extinct.

In spite of Jones Icones huge importance to the history of entomology in Britain, the manuscript was not made available beyond the reading room of the Museum’s archive until recently. Several attempts to publish Icones for a wider audience failed or were abandoned. However, as a part of a 2013-14 National Heritage Lottery Fund project, Flying Icons, all 6 volumes were digitised and keen amateurs and specialist entomologists were invited to identify all the species represented in Jones’s Icones

Expanding on this momentum, Oxford University Museum of Natural History’s newest publication, Iconotypes: A compendium of butterflies and moths, publishes Jones’s seminal work for the very first time. This enhanced facsimile is accompanied by expert commentary, contextual essays and annotated maps with modern taxonomic names and historical references clarified. Moreover, with over 1,600 colour illustrations, Iconotypes is visually stunning. This book represents an exciting step in the long history of trying to make William Jones’s masterpiece more accessible and we could not be more excited to share it with you all.

A golden sphere sitting on a stone balcony between stone columns and carvings

Solving a celestial mystery: the Sun, Earth and Moon model

By Danielle Czerkaszyn, Librarian and Archivist

We like to think we know a lot about our collections, but with millions of items to care for some inevitably remain mysterious, with little record of their history. Luckily, every now and then someone gets in touch with a story about an object or specimen we know very little about. We were delighted when this happened recently for one of the most overlooked items on display: a delicate scale model of the Sun, Earth and Moon.

The model is a long-standing feature of the upper gallery: an astronomical moment hidden amongst the zoological and the geological. Yet we knew very little about it. Who made it, when was it installed, and what was its intention?

Meet the maker: Ted Bowen (1898-1980)

The Earth and Moon at a scale of 1:4,000,000,000 are tiny spherical models.
Edmund ‘Ted’ John Bowen. Image courtesy of Dr Will Bowen.

Thanks to a chance remark by Dr Will Bowen we can reveal that the model was created by his grandfather, Edmund ‘Ted’ John Bowen, lifelong fellow in Chemistry at University College. Ted Bowen was passionate about communicating science effectively, and the model was intended as a simple yet powerful representation of the true scale of our Solar System.

Born in Worcester in 1898, Ted Bowen won the Brackenbury Scholarship in 1915 to the University of Oxford, where he studied chemistry in the Balliol/Trinity labs. It was here that, from necessity, he started to create his own scientific apparatus and models, all made from whatever was to hand.

In 1935, Bowen was elected a Fellow of the Royal Society for his research into fluorescence and in 1963 was awarded the society’s Davy Medal in recognition of his distinguished work explaining photochemical reactions. While Bowen devoted his working life to the field of chemistry, he had many other scientific interests, especially palaeontology, but also our planetary system.

Creation of the Sun, Earth, Moon model

The Earth model is no larger than a pea, but still beautifully detailed.

Although we don’t know for sure, it is likely that the model was made between 1965 and 1971, and donated while Bowen was a member (and later chairman) of the Committee for the Scientific Collections in the University Museum, as the Museum was then known.

The distance across the Museum’s main court, around 37 metres, represents the distance between the Earth and the Sun – one Astronomical Unit, or 150 million kilometres. This makes the model scale to roughly 1:4,000,000,000!

The Sun itself is the size of a small beach ball, while the Earth and the Moon become tiny objects: the Earth the size of a small pea, and the Moon little more than a dot. Yet Bowen’s attention to detail is striking: the Earth is decorated with continents and even the miniscule Moon has texture to its surface.

If you haven’t seen it before, be sure to look out for the model on the upper gallery of the Museum: the Earth and Moon are on one side, where the Museum Café is currently located, and the Sun glistens on the far side, nestled in our temporary exhibition gallery.

Many thanks to Dr Will Bowen for his reminiscences, which have illuminated an object that was hidden in plain sight.

Black and white photograph of borders, paths, and trees with spired tower in background

Celebrating 400 years of botany at Oxford University

By Danielle Czerkaszyn, Librarian and Archivist

John Phillips, Professor of Geology (1856-1874)

As a natural history museum, we are perhaps slightly unusual: aside from some fossilised plants, there are no botanic specimens in our collections. The reason for this is that when the Museum opened its doors in June 1860, Oxford Botanic Garden had already been around for a considerable 239 years, and it was considered unnecessary to move it.

Today, the Botanic Garden celebrates 400 years since its founding as the Oxford Physic Garden on 25 July 1621. To mark this anniversary we’ve explored our archive to highlight some connections between the Museum and Botanic Garden, in a relationship that continues to this day.

With its Pre-Raphaelite influence, the design of the Museum was conceived as an object lesson in art; both beautiful and instructive, it should teach students and visitors alike about the natural world. One of the most noticeable decorative teaching tools are the columns, capitals and corbels that surround the main court of the museum. Following Pre-Raphaelite principles, these were designed by Professor of Geology and the first Keeper of the Museum, John Phillips, who sketched most of the designs and outlined the order they would go in.

The plans called for 126 columns, 64 piers and 192 capitals and corbels. Each column was made from a different decorative stone from around Britain and Ireland, topped with a carved capital and flanked by a pair of corbels carved into plants representing the different botanical orders. As it was decided early in the design process for the Museum that the Oxford Botanic Garden would not move from the High Street, these carved plants were meant to ‘satisfy the botanist.’ Each column was supposed to be labelled with the name of the stone, its source, and the botanical name of the plant, but unfortunately only the geological inscriptions were completed.

James O’Shea carving the Cat window found on the front façade of the Museum, c. 1860

The carvings were created by ‘Nature’s own Pre-Raphaelites’ the O’Shea brothers, James and John, and their nephew, Edward Whelan. Working in collaboration with Charles Daubeny, Professor of Botany and head of the Oxford Botanic Garden, Phillips supplied the O’Sheas with specimens of the plants he had chosen, and so the carvings were made from life. Each capital is different and unique based on the plants they were representing. Some are simple and elegant while others are more intricate and hide small birds, animals and insects.

Phillips also worked with another curator at the Botanic Garden, William H. Baxter, who advised on suitable trees and shrubs to adorn the grounds surrounding the Museum. Over the years, as landscaping has changed and additional science buildings have been added around the Museum, only one of the trees chosen by Phillips and Baxter has survived. It is the imposing Giant Sequoia on the front lawn, which was planted in the early 1860s and is believed to be one of the oldest specimens in the United Kingdom.

Our connection to Oxford Botanic Garden continues to the present day. As the Museum embarks on the first major redisplay of its permanent exhibits in almost 20 years, staff are collaborating with the Garden to reference plants for displays showing the immense, interconnected variety of the natural world.

We are very pleased to be strengthening the Museum’s long relationship with the Botanic Garden, and would like to take this opportunity to wish everyone there a very happy 400th birthday!

Oxford Botanic Garden today
Top image: Oxford Botanic Garden in 1880

Marble-effect frame inlaid with a marble-effect stone showing the outline of numerous cross-section gastropod shells

The Continuing Importance of Corsi’s Legacy

Four Crowns is a studio based in Oxford which is dedicated to keeping the craft of scagliola alive. But what exactly is scagliola, and how does it relate to the Museum’s collections? Freddie Seddon, a University of Oxford Micro-Internship Programme participant at Four Crowns, tells more about this fascinating process…

Sculpture of the front half of a foot in brown/yellow marble effect, showing cracks and damage to some of the toes
Foot, Four Crowns, 2020
145mm

Scagliola is the technique of imitating the beautiful patterning and colours of marble. With roots in the ancient world, scagliola saw a revival from the 17th century, when European artists and architects returned from their Grand Tours of the continent wishing to replicate the marbles of Classical and Renaissance Europe.

Several techniques can be used to reproduce the appearance of marble in plaster, with the addition of other natural pigments and larger chips of coloured plaster. The artist must try to replicate the conditions under which particular marbles form: compressions, twists and layers applied to the plaster to give the image of breccia, veins, and even fossils.

The Museum has a large collection of decorative stones, including the Faustino Corsi collection, acquired in 1827. The Corsi collection holds 1,000 samples of ancient and modern decorative stones, including polished marbles, granites, serpentines, and jaspers. Faustino Corsi (1771–1846) built the collection in the early 19th century, first by gathering material used in ancient times across the Roman Empire, and later adding decorative stone from contemporary quarries, mainly in Italy, but also Russia, Afghanistan, Madagascar and Canada.

Marble-effect frame inlaid with a marble-effect stone showing the outline of numerous cross-section gastropod shells
Lumachellone, Four Crowns, 2018 990x485x60mm

The Corsi collection is valuable tool when it comes to scagliola. Images and marble descriptions from the Corsi database help determine the processes a certain scagliola sample should undergo and the natural colours that these would produce. To accurately depict marble, an artist might need to create upwards of twenty colours and clarity levels – even then, only high-quality, natural pigments will produce natural results. The piece is polished to obtain a shine like that possible on natural marbles, and cross-checked against Corsi’s samples one final time to guarantee a faithful replication of the stone.

Statue of a robed figure standing on a plinth and holding a golden lizard-like reptile in one hand
Codazzi, Four Crowns, 2017
270x200x760mm

In this way, the selection of which stone to imitate is a creative challenge in itself for the artist. Each item in the Corsi collection offers different aesthetic and cultural experiences. Lumachellone antico, for example, is limestone with large fossilized gastropods, admired in classical Rome for its richness and complexity. The collection contains only one example of this stone, composed of samples from two different locations, which the Four Crowns artist has been able to faithfully replicate. As this marble type has never been available on any commercial scale or markets, it is up to the emerging generation of scagliola craftsmen to painstakingly reproduce this ancient stone.

The most ambitious and impactful presentations of scagliola can even mirror a combination of marbles. The Four Crowns’ Codazzi emulates four different stone types: the head is bigio antico, the drapery is giallo antico, and the legs and feet replicate a limestone common in Sumerian sculpture, with a shoulder inlay of bianco e nero.

Through the art of scagliola, and the unique reference resource of the Corsi Collection, rare, beautiful or lost marbles are able to be recreated time and again.

Freddie Seddon is a second year student, reading Ancient and Modern History (BA) at Wadham College, Oxford.

Ink drawing showing the skeleton of dinosaur

Tales of Iguanodon Tails

By Leonie Biggenden, Volunteer

As one of our many invaluable volunteers, Leonie Biggenden has regularly helped to run our Science Saturdays and Family Friendly Sunday activities, both of which take place under the watchful eyes of the large T. rex and Iguanodon skeletons in the Museum’s main court. Having spent so much time beside the Iguanodon, and with a lack of in-person volunteering opportunities in recent months, Leonie decided to find out some of the history of this striking cast. For Volunteers Week this week, she shares what she discovered…

Next year will be the 200th anniversary of the discovery, by a roadside in Sussex, of the first Iguanodon teeth. Found by Mary Mantell in 1822, her husband Gideon saw their similarity with the teeth of modern iguanas and suggested they were from a huge, ancient, herbivorous lizard. He called the animal Iguanodon, and you can see his sketch reconstruction at the top of this post.

However, as an amateur palaeontologist, Gideon Mantell was not initially taken seriously by the scientific establishment. Some claimed the teeth were actually from a rhinoceros, or even a pufferfish! But in 1834, more complete remains were found by workmen who had accidentally blown up a slab of rock in a quarry near Maidstone, Kent. Iguanodon became a rock star of the dinosaur world, being only the second dinosaur – and the first herbivorous one – to be named (the first was the carnivorous Megalosaurus – another famous Museum specimen).

The Iguanodon bernissartensis cast in the centre court of the Museum.

Twenty years later, a model of an Iguanodon was constructed by sculptor Benjamin Waterhouse Hawkins as one of a set of 30 life-sized models of extinct animals for the relocated Crystal Palace Gardens in South London. It was mounted in a rhinoceros-like pose, with what we now know as a thumb spike placed as a nose horn. Scientists always look to the information they have available to them, including observation of living animals, and there is an iguana called Cyclura cornuta – the Rhinoceros Iguana – which does indeed have nose horns, so at the time the nose horn made sense.

Close up photo of iguana head
Rhinoceros Iguana, showing a nose horn. Image: H. Zell, CC BY-SA 3.0 , via Wikimedia Commons

Another 20 years on and a most significant find was made in southern Belgium. In February 1878, more than 30 fully articulated, adult Iguanodon fossil skeletons were found by miners Jules Créteur and Alphonse Blanchard, 322 m deep in the Sainte Barbe coal mine. Louis de Pauw from the Belgian Royal Museum of Natural History started to excavate the skeletons. It was a risky undertaking. In August an earthquake cut them off for two hours, and in October they were forced to return to the surface as the mine flooded.

The fossils were wrapped in damp paper, covered in protective plaster, and divided into 600 blocks. Each specimen was given a number and each block a letter, to record their exact positions in the mine. The 130 tonnes of specimens, rock, iron reinforcing rods, and plaster were then brought to the surface of the mine by horse drawn trucks and transported to Brussels.

For the first time, scientists, and later the public, could see complete dinosaur skeletons. This was important because scientists learned that the unusual spike found in the scattered fossils in the UK was a thumb spike rather than a nose horn, and they ditched rhino resemblance too, though not in time for the Crystal Palace reconstruction!

In 1882, de Pauw began assembling at least 38 Iguanodon skeletons under instruction from Louis Dollo, another famous Belgian palaeontologist. The aim was to put them in their most probable living position. A room with a high ceiling was needed because of their size, and a chapel was chosen. Scaffolding was built with hanging ropes being adjusted so the fossilized bones could be moved into their most likely position and then fixed and reinforced with iron rods.

Iguanodon bernissartensis, like the one on display here in the Museum, was a new species, named in 1881. It lived about 125 million years ago. The first assembly was revealed in 1882 and went on public display in Brussels in 1883. Points of reference used for the pose were the skeleton of a cassowary and a kangaroo.

On the Museum’s cast skeleton you can see rod-like structures going across the blade-like, bony processes on the back. These are ossified, or hardened, tendons and would help to stiffen the tail and therefore restrict its movement. They have been broken where the bend in the tail was made to resemble a kangaroo-like stance. The displacement shows that the true position of the tail should be straight.

But having such a straight tail would mean that the Iguanodon would need its head and arms nearer the ground for better balance. The strong hind limbs suggest it would usually walk on two legs with its tail held aloft, as does the fact that fossil Iguanodon footprints are three-toed, and the three-toed limbs are the back ones.

By the end of 1883, six Iguanodons had been mounted this way and positioned in their own glass cage in the courtyard of the Brussels museum. So Iguanodon was one of the very first dinosaurs to be recovered in its entirety and mounted in three dimensions as though a living animal!

Leonie is a longstanding Public Engagement volunteer at the Museum. Unable to volunteer in the normal way during the lockdown, she researched the history of this favourite specimen and shared what she learned in a talk for other volunteers as part of an online ‘social’. This article has been adapted from that presentation.