Eggs in the tower

By Chris Jarvis, Education Officer

We have our first eggs! After an earlier than usual return from the warmth of Africa, followed by a cold snap of north easterly winds, our swifts have begun to lay their first clutches of eggs in the tower.

Ten eggs were counted on 14 May, some in pairs and some lying singly on nests. Birds in other nests appear to be incubating as well, sitting in pairs and screaming out at any newcomers investigating possible nesting sites.

More swifts are arriving daily and screaming parties are urgently exploring for potential nesting locations. They buzz the tower’s nesting holes at speed and bang on the entrances with their wings like naughty teenagers playing a vociferous game of ‘knock and run’!

Typically, no bird has yet elected to nest in either of the boxes fitted with webcams. But as the weather warms and more swifts take up residence every day, we’re sure you’ll be able to follow all the drama of the Swifts in the tower very soon.

The swifts circle the Museum tower looking for suitable nesting sites

The delicate art of laying
Swifts tend to lay their eggs in the mornings, usually between 8am and 11am. The small, fragile eggs are white to reflect light, an adaptation shared by most cavity-nesting birds that makes the eggs more visible to adults in the dark of the nest.

The first eggs this year appear to be quite early in the season compared with the observations by David Lack in the 1940s and 50s. At that time, when the study of the Museum’s colony began, the first eggs were recorded on average between 17 and 22 May, but sometimes none was laid until the first week of June.

Egg production and laying in swifts are very closely tied to the weather, and production seems to be triggered by the availability of food. Swifts feed exclusively on small airborne insects, which are more abundant in the warm thermals and light winds we experience on good summer days.

It takes a swift five days to produce and then lay an egg. Five days before our first eggs were laid it was sunny and warm, just before the strong, cold north easterly winds swept down over the weekend and lowered the temperature. The warmer early start to the summer seems to have triggered this early laying; whether this is a trend that is increasing as the climate changes is something we should able to answer with long-term datasets provided by studies like this.

Dealing with the weather
Whatever climate change has in store for us it is becoming clear that we won’t experience repeated hot summers. The unpredictability of the British summer reigns supreme.

Swifts have evolved several wonderful adaptations to deal with the vagaries of our weather. Their eggs can be left without an adult to keep them warm for several days. There are records of eggs being left unattended for almost a week and still developing normally. Although adults usually take it in turns to feed and brood the eggs, sometimes during the day the eggs are left unattended by both birds which are then able to forage far afield for food.

Unlike many songbirds which produce one egg a day until their clutch is completed, swifts are able to space out their laying. In a clutch of two or three eggs, the second or third may be laid two or three days after the first, depending on weather conditions. The birds will also limit the size of clutches, with clutches of three eggs the average in warm weather and two eggs the average in cold weather. This helps the adults to supply all of their young with enough food.

Finally, swifts may also eject eggs and lay a second clutch. Some studies have linked this behaviour to cold weather but this has not always been the case at the Museum colony and is a further line of investigation in the ongoing studies of these most secretive of birds.

From laying to hatching usually takes about 19 days, depending on the weather. So we should be seeing our first chicks at the very beginning of June, hopefully streaming live on the Swiftcam

*

Screaming parties prospecting for nest sites are a good way for you to see if you have nesting swifts nearby. Any records really help with our understanding of the current population in the UK. You can help conservation and recording for the Oxford Swift City project, or use the RSPB’s Swift Mapper for the rest of the UK.

Through the looking glass

With our Life, As We Know It redisplay project now underway, our Senior Archives and Library Assistant Danielle Czerkaszyn takes a behind-the-scenes look at how we captured the contents of the current displays for the Museum’s archive.

The archive here holds a unique collection of natural history books, journals and documents covering a wide range of subjects related to the Museum’s collections and research. It also contains papers and objects on the history of the building, providing an institutional memory of Oxford’s ‘University Museum’ since its foundation in 1860.

From an archive perspective it was really important to document the current layout of the cases, their specimens and text before they were removed from the court to make way for the new showcases in the first phase of our redisplay work.

The museum in late 2019

The displays as we know them – with exhibitions on the Oxfordshire dinosaurs, Alice in Wonderland, the Oxford Dodo, and more – were last changed in 2000. For the last 20 years visitors to the Museum would remember their first time being wowed by the Megalosaurus jaw – the world’s first scientifically-described dinosaur – or charmed by the Dodo made famous in Lewis Carroll’s Alice Adventures in Wonderland.

Although after 20 years it is time for a change, the stories and information in the displays are too good to be forgotten. So before anything was removed we began to build the archive for the future.

A display of the fossilised remains of Megalosaurus
The previous display on Megalosaurus: The First Dinosaur

The best way to capture all the information of the displays was through high resolution photography, but this was not as straightforward as we hoped.

The first two obstacles to good photographs are pretty obvious to anyone looking at the cases: glass causes huge amounts of glare; and each case has a big dividing line down the centre where the two sliding glass doors meet, cutting what should be a lovely seamless image into two halves.

To avoid glare and the solve the problem of the dividing line, our photographer Scott opened each individual side of the case, photographed two or three images of the display, and then stitched the separate photos together using Photoshop.

Each case was photographed in two or three segments
The segments were then stitched back together and adjusted for exposure and colour balance to create the final image

Another obstacle to taking good photographs of the displays came from the Museum itself. Some of our larger display furniture, such as the glass case for the Atlantic Bluefin Tuna or the huge T. rex plinth – got in the way of a nice straight shot. Because these items are so large and heavy they were impossible to move, so we had to improvise and do our best.

Capturing the displays before the current cases were removed allowed us to keep an archival record of their contents

Thankfully, we managed to get shots of all 24 displays before they were removed and so a record of each case now rests with the Museum’s archive. If anyone wants to know what the display cases in the court looked like from 2000 to 2020, they will now be able to look back at the images in the archive and recall the magic of the Oxford Dodo exhibit that perhaps first made them fall in love with the Museum.

Our new displays are now in development, and will include some beautiful presentations of the diversity of life, looking at the importance and fragility of biodiversity and human impact on the environment. These new exhibits will show how the biological processes of evolution combine with the geological processes of our dynamic Earth to give rise to the immense, interconnected variety of the natural world.

We look forward to telling you more about that here as the project progresses.

The Life, As We Know It redisplay project is supported by a generous grant from FCC Communities Foundation.

That’s Amore

By Laura Ashby and Megan MacLean, events managers

From cockroaches hissing alluringly to their mate, to smooth newts wafting intoxicating pheromones, and butterflies with eyes in their genitalia, the amorous pursuits of the natural world are enough to make St Valentine blush.

Valentine’s Day may conjure images of Cupid and his arrows, and indeed the romantic cherub of mythology has a brutal counterpart in nature. When the hermaphrodite Garden Snail (Helix aspersa) snuggles up to mate, both partners try to stab each other with love-darts in a mating duel. These darts are coated in chemicals that increase the chances of the dart-receiver’s eggs being fertilised. Love is a dangerous game: sometimes a dart misfires and hits a vital organ – a dart to the heart.

The hermaphrodite Garden Snail (Helix aspersa) fires love-darts as part of its mating ritual

Traditionally given as wedding presents in Japan, the lacy white deep-ocean glass sponge Euplectella, known as Venus’ flower basket, offers an interesting take on “…’til death do us part”. When a young shrimp pair enters the sponge to mate, they become trapped inside as they grow too large to escape. The couple then spend the rest of their lives together, caged in the sponge, whilst their offspring are small enough to leave through the small gaps and seek sponge-mates of their own.

The glass sponge Euplectella spp., also known as Venus’ flower basket

And if you forgot all about Valentine’s Day you will no doubt be panic-buying a bunch of overpriced roses on the way home, but be heartened that humans are not the only creatures that try to attract mates by presenting each other with gifts. The male Bowerbird builds a bower to attract females, decorating it with brightly coloured embellishments including flowers, leaves, stones, and even bits of plastic.

Objects from a Spotter Bowerbird bower, showing an interesting preference for white and green material

Meanwhile, male Empids (dance flies) offer a high-protein ‘nuptial gift’ – a gloopy sac called a spermatophore – for the female to eat during copulation. One theory is that females use the size of the gift as a way of choosing their mates…

Moving on from the natural world to natural historians, in 1835, Frederick William Hope married the wealthy heiress Ellen Meredith. He donated one of the founding collections to the Museum that they subsequently worked on together, the inspiration behind our current HOPE for the Future project. Meredith had recently rejected a marriage proposal from the future Prime Minister Benjamin Disraeli, stating that:

a life as the wife of a politician would have been a very dull one indeed

We at the Museum completely understand that weekends rootling around in dung for beetles with her entomologist husband seemed more appealing than stiff diplomatic receptions at Number 10.

Ellen Meredith and Frederick William Hope married in 1835

Fast forward to the modern day, and romance is in the air at the Museum, as many couples celebrate their marriages here each year. Every wedding has a different flavour, depending on the interests of the bride and groom, but natural history puns are guaranteed during the speeches, and dancing amongst the dinosaurs is a must!

A wedding in the Museum is surely the best start to a marriage

It may seem like a strange idea to tie the knot in a Museum, but perhaps 60-odd years of marriage seems comfortingly short in the context of 4.5 billion years of geological time?

If you are interested in talking with our events team about celebrating your wedding at the Museum of Natural History, contact Laura and Megan at venue@oum.ox.ac.uk / 01865 282780.

HOPE for the Future is supported by the National Lottery Heritage Fund. Find out more and get involved: https://www.oumnh.ox.ac.uk/hope-future

Top image: Gold-fronted Bowerbird, once thought to be extinct, but rediscovered in the Foja Mountains of Indonesia, painted by activist artist Jane Mutiny for the Conservation Optimism film festival at the Museum in 2019.

 

Oxford University Museum 1860

An ever-evolving museum

Oxford University Museum 1860

As we embark on our Life, As We Know It redisplay project – the first substantial changes to the permanent exhibits in more than 20 years – our Senior Archives and Library Assistant Danielle Czerkaszyn takes a look back at 160 years of an ever-evolving museum, in the first of a series of posts around the redisplay.

On 15 June 1860, Henry W. Acland, Regius Professor of Medicine at the University of Oxford, wrote:

The Oxford Museum slowly approaches completion. The building will shortly sink into insignificance when compared to the contents it will display, and the minds it will mould.

The University Museum at Oxford, as the Museum was originally known, was established to bring together scientific teaching and collections from across the University under one roof. The doors opened in June 1860, and soon after several departments moved into the building – Geometry, Experimental Physics, Mineralogy, Geology, Zoology, Chemistry, Astronomy, Human Anatomy, Physiology, and Medicine.

Ground floor plan 1866
Ground floor plan of the University Museum in 1866

When the University Museum opened, it was not simply a museum; each department got a lecture room, offices, work rooms and laboratories, as well as use of the library and display areas. According to Acland, a key figure in the Museum’s foundation, in 1860 the outer south aisle of the main court featured mineralogical specimens and chemical substances, while the inner aisle exhibited Oxfordshire dinosaurs.

Acland’s detailed descriptions of the central aisle highlighted zoological specimens with twelve parallel cases of taxidermy birds, four side cases of taxidermy animals, including animals on top of the cases, and six table cases down the centre showing shells, crabs, insects, corals and sponges, starfish and urchins. The inner north aisle presented reptiles and fish, while the outer aisle introduced the Ashmolean‘s zoology specimens, as well as anatomical and physiological collections.

The Museum in 1890
The Museum court in 1890

Although members of the public were welcome in the Museum from the start, the departments which inhabited the building were more concerned with teaching space, research facilities and the storage of their specimens than the needs of visitors. As a result, most of the early displays and cases were arranged in a systematic manner that focused on space-saving practicalities and communicating scientific knowledge, rather than aesthetics.

Geology specimens on the walls
Geology specimens displayed on shelves on the walls
Early Dodo display case
An early display focused around the Museum’s famous dodo specimen

Tracing through old annual reports it is clear that cases in the main court have been almost constantly refreshed and updated, with displays highlighting new specimens and changes to scientific understanding, or through practical improvements to lighting, electricity points and environmental monitoring. Nonetheless, the overall layout of the cases remained the same until the early 1980s.

The Museum court, unknown date
The Museum court, unknown date

From the early 1990s a focus on public engagement began to increase. Longer opening hours were introduced and displays were redesigned to link to both undergraduate teaching as well as the National Curriculum. Temporary exhibitions also regularly featured in the main court to increase the variety of specimens on display.

The Museum court in 1994
The Museum court in 1994
Megalosaurus temporary exhibition
A temporary exhibition about the Megalosaurus dinosaur in the 1990s

The turn of the millennium marked the start of a major project to update the main court displays. The central cases were reconfigured and a new set of introductory cases installed, including many themes familiar to visitors in recent years, such as exhibits on the Oxfordshire dinosaurs, Alice in Wonderland, and the Oxford Dodo.

T. rex makes its presence known

These showcases were complemented by the addition of an imposing cast of ‘Stan’ the Tyrannosaurus rex in the centre aisle, positioned behind the historic Iguanodon cast. The changes were well received and attendance in the month of July 2000 was the highest ever recorded. The Museum also introduced live insects for the first time in 2000, with Upper Gallery tanks containing Madagascan Hissing Cockroaches, South American Burrowing Cockroaches, a variety of stick insects, and some large tarantulas.

The project completed in late 2005 when the displays on Evolution, the History of Life, and Invertebrate Biodiversity were installed. Touchable specimens were also given their own permanent display area, allowing visitors the opportunity to physically interact with natural history material. These and other public engagement activities were recognised when the Museum won The Guardian newspaper’s Family Friendly Museum of the Year Award for 2005.

People around a table of touchable taxidermy specimens
New tables of touchable specimens were introduced for visitors in the 2000s.

The last substantial update to the fabric of the building took place in 2013, when the Museum closed for a year to fix the leaks in the glass roof. Taking advantage of the closure, a major piece of conservation work was undertaken on the seven whale specimens suspended from the roof. Having been on display for over 100 years, the whales were in need of considerable TLC.

A conservation team worked on the whale skeletons during the Museum’s closure for roof repairs in 2013.

Today, new and exciting changes are afoot as we embark on the first major changes to our permanent displays in almost 20 years. New high-end showcases will present displays under the concept of Life, As We Know It – beautiful presentations of the diversity of life, and the importance and fragility of biodiversity and human impact on the environment. The new exhibits will look at how the biological processes of evolution combine with the geological processes of our dynamic Earth to give rise to the immense, interconnected variety of the natural world.

Looking back across the decades we can see that the Museum is never static, but instead constantly changing and adapting, shifting from its foundation as a Victorian centre of academia to the accessible and engaging space we know and love today.

The Life, As We Know It redisplay project is supported by a generous gift from FCC Communities Environment.

Close up of OUMNH-ZC-7483 Section of blue whale intestine with mysterious acanthocephalan parasites

Worms of Discovery

By Mark Carnall, Life Collections manager

The Museum’s zoology collections contain a dizzying diversity of animal specimens. It is a collection that would take multiple lifetimes to become familiar with, let alone expert in. So we benefit hugely from the expertise of visiting researchers – scientists, artists, geographers, historians – to name just a few of the types of people who can add valuable context and expand our knowledge about the specimens in our care.

Earlier this year, Dr Andrew McCarthy of Canterbury College (East Kent College Group) got in touch to ask about our material of Acanthocephala, an under-studied group of parasitic animals sometimes called the spiny-headed worms.

Although there are around 1,400 species of acanthocephalans, they are typically under-represented in museum collections. Dr McCarthy combed through the fluid-preserved and microscope slide collections here, examining acanthocephalan specimens for undescribed species, rare representatives and unknown parasitic associations.

Close up of OUMNH-ZC-7483 Section of blue whale intestine with mysterious acanthocephalan parasites
Close up of OUMNH-ZC-7483 Section of blue whale intestine with mysterious acanthocephalan parasites

One such specimen, catchily referenced OUMNH.ZC.7483, was of particular interest. It is a section of blue whale intestine packed with acanthocephalan adults, labelled ‘Echinorhynchus sp. “Discovery Investigations”’, and dated 13 March 1927. Drawing on his expert knowledge, Dr McCarthy spotted an unusual association here because the genus Echinorhynchus was not known to infect Blue Whales, meaning the specimen could represent a species to new science.

However, identifying different species of acanthocephalans cannot be done by eye alone, so Dr McCarthy requested to remove one of the mystery worms from the intestine and mount it on a slide to examine its detailed anatomy. When we receive a destructive sampling request like this it triggers an investigation of the specimens in question: we need to weigh up their condition, history, and significance against the proposed outcome of the research before we decide whether the permanent alteration of the specimen justifies the outcome.

Image of Oxford University Museum of Natural History zoology collections accession register entry for this specimen showing the donation of the specimen and collector information.
Image of Oxford University Museum of Natural History zoology collections accession register entry for this specimen showing the donation of the specimen and collector information.

This particular investigation began to yield a much richer story than the Museum’s label suggested. It turned out that the specimen was collected by Sir Alister C. Hardy who was serving as zoologist on RRS Discovery’s scientific voyage to the Antarctic. Fortunately, Discovery’s scientific findings were meticulously documented and published by many libraries of the world, including the fantastic Biodiversity Heritage Library where it was easy to find the report mentioning acanthocephalans collected during the voyage.

Alongside descriptions of acanthocephalans from seals, dolphins and icefish there is no mention of Echinorhynchus sp. from Blue Whales, though there are a few references to another genus, Bolbosoma, collected from Blue Whales on seven occasions: a single individual of Bolbosoma hamiltoni, so obviously not this specimen, and six occurrences of Bolbosoma brevicolle from the intestines of Blue Whales from South Africa and South Georgia.

These specimens and others reported in the Discovery reports. Image from Biodiversity Heritage Library

Piecing together the evidence, the association with Hardy, the dates, and the descriptions of RRS Discovery’s acanthocephalans, it seems likely that our specimen is one of the six samples of Bolbosoma brevicolle and not Echinorhynchus at all. So in this instance we decided not to grant destructive sampling as the likelihood of identifying a new species seemed much lower when all the information was brought together.

Although sampling wasn’t granted, Dr McCarthy was delighted that his initial research request had prompted the discovery of some important historical connections to the humble specimen, and the new identification seemed to fit.

We still weren’t sure when or why this specimen was mislabelled some time between the Discovery reports and its donation to the Museum in 1949, so Dr McCarthy conducted some further investigations. He found out that Echinorhynchus was the original name combination for Bolbosoma brevicolle, and that H. A. Baylis, a parasitologist and author of Discovery reports, had links with the University of Oxford.

This story is just one example of how visiting researchers enrich knowledge and information about our collections, and it illustrates nicely why our work with broader research communities is so important.

Sight without eyes

By Lauren Sumner-Rooney, Research Fellow

Vision is among the most important innovations in animal evolution. The ability to see predators, prey, mates, and the environment transformed the way animals interact with each other and the world around them. Eyes can take many different forms, but this month saw the description of a visual system unlike almost any other known to science, found in a brittle star called Ophiocoma wendtii.

Brittle stars are marine invertebrates related to starfish. They have long, slender arms connected to a central disk, but no head, no brain, and – so we thought – no eyes. But recent experiments have shown that some brittle stars are able to see the world around them.

Ophiocoma wendtii is a common species found throughout the Caribbean Sea and the Gulf of Mexico. If you rummage around in coral rubble in shallow water, you’ll probably find Ophiocoma hiding underneath rocks and other debris, sheltering from their fishy predators. It has beautiful bright red tube feet (small, water-filled tentacles) and a neat party trick: it changes colour. During the day, the animals are a deep reddish-brown colour, but after dark they become beige with dark stripes.

The red brittle star, Ophiocoma wendtii

For more than thirty years, O. wendtii has been something of a mystery to scientists like myself who are interested in animal vision. It’s covered in light-sensing cells – thousands of them – and it hates being exposed to bright light, quickly dashing for cover if possible. However, it’s possible to head for dark, shadowy places without vision; you only need to be able to tell that one direction is brighter than the other. So, with a team of colleagues from Germany, Sweden and the USA, we set about giving the brittle stars an eye-test.

Lauren Sumner-Rooney, collecting specimens of Ophiocoma wendtii. Image: Jane Weinstock

We know that when they’re exposed to sunlight, O. wendtii try to hide underneath nearby rocks or other objects, so we designed a circular arena with a stimulus printed on one side – the idea is that the stimulus might resemble an object under which the animals can shelter, and the animal will move towards it.

We ran three experiments, changing the stimulus and background of the arena in each to test whether the brittle star can just see relative light or dark areas, or whether it can resolve finer points of contrast. To my surprise, O. wendtii moved towards the stimuli in all three experiments significantly more frequently than expected by random chance, as you can see in the video below. This was super exciting, as it represents not only the very first evidence of vision in these animals, but the second known example of any animal that can ‘see’ without having eyes (the first is a close relative, a sea urchin).

While O. wendtii is known to shelter during the day, we were also curious to test its behaviour at night. Running the same experiments again in natural darkness, we found that animals no longer moved towards any of the stimuli. There could be a whole number of reasons behind this, so we devised tests that eliminated several possibilities, and were left with a remaining explanation that the animal’s colour-change between night and day was somehow responsible.

Close-up of the arm plates of Ophiocoma wendtii

Colour-changing in the brittle star is controlled by the expansion and contraction of cells, called chromatophores, that are filled with pigment granules. These sit inside pores in the skeleton, alongside the light-sensing cells. During the day, the chromatophores expand, pushing up through the pores and spreading over the body surface. The pigment is spread over the outside of the animal, which looks dark brown as a result. During the night, the chromatophores contract, bringing all the pigment granules back inside the skeleton and giving a paler appearance.

The red brittle star, Ophiocoma wendtii. Image: Heather Stewart

We thought that during the day the pigment granules surrounding the light-sensing cells might block light reaching them from most directions. To test this, we constructed digital models of the visual system, creating 3D models of the light-sensing cells, the skeleton, and the pigment granules.

We found that in light-adapted systems, those with pigment, light could only reach the sensory cells from an angle of around 60° out of 360° which, though probably very coarse, could support vision. By removing the pigment from the models, vision was made impossible, as light could reach the sensory cells from too many different directions. It looked as though it was the chromatophores that made all the difference.

This is the first proposed example of whole-body colour change enabling and disabling vision in any animal, and raises many new questions about image formation and information processing. There are exciting parallels with the only other example of ‘extraocular’ (=without eyes) vision, the sea urchin we mentioned earlier: these sea urchins can also change colour in response to light levels, using similar chromatophores. Have they independently evolved a similar trick?

Top image: Heather Stewart